Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products.
نویسندگان
چکیده
Marine red algae (Rhodophyta) are a rich source of bioactive halogenated natural products. The biogenesis of the cyclic halogenated terpene marine natural products, in particular, has attracted sustained interest in part because terpenes are the biogenic precursors of many bioactive metabolites. The first enzymatic asymmetric bromination and cyclization of a terpene, producing marine natural products isolated from red algae, is reported. Vanadium bromoperoxidase (V-BrPO) isolated from marine red algae (species of Laurencia, Plocamium, Corallina) catalyzes the bromination of the sesquiterpene (E)-(+)-nerolidol producing alpha-, beta-, and gamma-snyderol and (+)-3beta-bromo-8-epicaparrapi oxide. alpha-Snyderol, beta-snyderol, and (+)-3beta-bromo-8-epicaparrapi oxide have been isolated from Laurencia obtusa, and each have also been isolated from other species of marine red algae. gamma-Snyderol is a proposed intermediate in other bicyclo natural products. Single diastereomers of beta-snyderol, gamma-snyderol, and mixed diastereomers of (+)-3beta-bromo-8-epicaparrapi oxide (de = 20-25%) are produced in the enzyme reaction, whereas two diastereomers of these compounds are formed in the synthesis with 2,4,4,6-tetrabromocyclohexa-2,5-dienone (TBCO). V-BrPO likely functions by catalyzing the two-electron oxidation of bromide ion by hydrogen peroxide producing a bromonium ion or equivalent in the active site that brominates one face of the terminal olefin of nerolidol. These results establish V-BrPO's role in the biosynthesis of brominated cyclic sesquiterpene structures from marine red algae for the first time.
منابع مشابه
The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products.
Halogenated natural products are frequently reported metabolites in marine seaweeds. These compounds span a range from halogenated indoles, terpenes, acetogenins, phenols, etc., to volatile halogenated hydrocarbons that are produced on a very large scale. In many cases these halogenated marine metabolites possess biological activities of pharmacological interest. Given the abundance of halogena...
متن کاملOn the regiospecificity of vanadium bromoperoxidase.
Vanadium haloperoxidase enzymes catalyze the oxidation of halide ions by hydrogen peroxide, producing an oxidized intermediate, which can halogenate an organic substrate or react with a second equivalent of hydrogen peroxide to produce dioxygen. Haloperoxidases are thought to be involved in the biogenesis of halogenated natural products isolated from marine organisms, including indoles and terp...
متن کاملInactivation of vanadium bromoperoxidase: formation of 2-oxohistidine.
The basis of the irreversible inactivation of the vanadium bromoperoxidase (V-BrPO) isolated from the marine alga Ascophyllum nodosum under turnover conditions at low pH (i.e., 15 to 100 mM H2O2, 0.1 KBr, ca. 15 nM V-BrPO in 0.1 M citrate, pH 4) has been investigated. Inactivation under these conditions was found to produce 2-oxohistidine as identified by HPLC using electrochemical detection. F...
متن کاملCrystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.
The three-dimensional structure of the vanadium bromoperoxidase protein from the marine red macroalgae Corallina officinalis has been determined by single isomorphous replacement at 2.3 A resolution. The enzyme subunit is made up of 595 amino acid residues folded into a single alpha+beta domain. There are 12 bromoperoxidase subunits, arranged with 23-point group symmetry. A cavity is formed by ...
متن کاملSulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Evidence for direct oxygen transfer catalysis.
We have previously shown that vanadium bromoperoxidase from Ascophyllum nodosum mediates production of the (R)-enantiomer of methyl phenyl sulfoxide with 91% enantiomeric excess. Investigation of the intrinsic selectivity of vanadium bromoperoxidase reveals that the enzyme catalyzes the sulfoxidation of methyl phenyl sulfide in a purely enantioselective manner. The K(m) of the enzyme for methyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 46 شماره
صفحات -
تاریخ انتشار 2004